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Nuclear Size Effect on Bremsstrahlung in the BeV Range* 
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Since a more detailed knowledge of the bremsstrahlung cross section at high energies may be required for 
certain photoproduction experiments, the percentage correction to the Bethe-Heitler point-nucleus results 
arising from the finite size of the nuclear-charge distribution is estimated. The effect of a shape-independent 
approximation to the form factor is considered. The results presented in Table I of the text indicate correc
tions of less than a few percent for incident electrons wtih energies in the BeV range. A comparison with 
previous work is also made. 

I. INTRODUCTION 

A S the new multi-BeV electron accelerators are 
-* ** brought into full operation, the bremsstrahlung 
beams obtained from these electrons will be used in 
various photoproduction and other types of experi
ments. In order to do such experiments accurately, it is 
desirable to have as detailed and precise a knowledge 
of the bremsstrahlung cross sections as is possible. 
This is especially so for measuring photoproduction by a 
difference experiment, where the shape of the brems
strahlung spectrum in the high-frequency region is of 
particular importance. It was in the course of investi
gating this problem, that the question of the effect of 
finite nuclear size was raised. 

As is well known, electrons in the BeV range have a 
de Broglie wavelength that is small compared to 
nuclear radii. Thus, such electrons were expected to 
probe some of the details of nuclear structure. These 
expectations have been well born out by the high-
energy electron-scattering experiments at Stanford and 
elsewhere. The effect of the finite size of the nuclear-
charge distribution in these experiments has been in
terpreted in terms of a form factor f(q), where q is the 
momentum transferred to the nucleus.1 Just what effect 
this would have on a process such as the bremsstrahlung 
arising from the scattering of such a high-energy elec
tron by a high-Z nucleus is not immediately clear. For 
example, in the somewhat related process2 of /x-pair 
production, finite nuclear size effect appear to reduce 
considerably the cross section from the result for a 
point nuclear-charge distribution. The smearing out of 
the nuclear charge might similarly be expected to 
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1 For example, R. Hofstadter and R. Herman, High-Energy 
Electron Scattering Tables (Stanford University Press, Stanford, 
California, 1960). 

2 G. H. Rawitscher, Phys. Rev. 101, 423 (1956). I t seems appro
priate to note that ju-pair production differs from bremsstrahlung 
in that at threshold, a relatively high minimum momentum trans
fer is required as compared with that associated with the electron 
bremsstrahlung. Thus, finite-size effects may be expected to 
become significant at the ju-pair threshold. However, our reason 
for citing this example rests on Rawitscher's Fig. 1 in which the 
finite-size effects appear to persist even as we go away from 
threshold and the minimum momentum transfer correspondingly 
decreases. 

reduce the bremsstrahlung cross section, especially 
since regions of very-high momentum transfer q are 
now energetically possible for BeV electrons. On the 
other hand, it has been argued rather qualitatively on 
the basis of the Bethe-Heitler formula for a point 
nuclear charge, that since the contributions of regions 
of large q to the integral for the bremsstrahlung spec
trum appear to be small, the effect of finite nuclear 
size is not significant.3 The higher accuracy demanded 
by present day experiments and some of the considera
tions mentioned above are the reasons for reporting the 
more quantitative estimates of this note. 

Actually, some previous calculations of the finite 
nuclear size effect on electron bremsstrahlung have 
been made at lower energies ranging from about 20 to 
100 MeV by Biel and Burhop.4 However, it will be 
recalled that the characteristic angle, do, for gamma 
emission relative to the incident electron is given by the 
relation E<fiQ~1} where Eo is the incident electron 
energy in units of its rest energy. Unfortunately, the 
Biel and Burhop results extend over a range where 
Eoflo^lO to 1000, so that the finite-size effects occur 
for correspondingly small amplitudes where, as acknowl
edged, they would be difficult to detect. Further, the 
expressions that they obtain seem to be unsuitable for 
the characteristic smaller angles where Eo#o *s less th&n 
or of the order of one. In particular, although they 
obtain finite ratios, their expressions for the cross 
sections diverge and their effective minimum momentum 
transfer approximates to zero for forward emission. 
These results are not too surprising since their point 
source cross section agrees with an earlier calculation 
by Hough,5 wherein he points out that such an expres
sion is approximately valid for angles where E{fio^>l. 
In this note, our expressions for the cross sections are 
not divergent for forward emission and the minimum 
momentum transfer is not zero. Some further compara
tive comments of interest are more relevently made 
below. 

3 W. Heitler, The Quantum Theory of Radiation (Oxford Uni
versity Press, New York, 1954), 3rd ed., p. 254. 

4 S. J. Biel and E. H. S. Burhop, Proc. Phys. Soc. (London) 68, 
165 (1955). 

5 P. V. C. Hough, Phys. Rev. 74, 80 (1948). 
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II. DIFFERENTIAL CROSS SECTION 

To keep the calculation of bremsstrahlung from a 
high-energy electron being scattered by a finite-size 
nucleus as simple as possible at present, we assume the 
validity of the Born approximation and as usual, 
neglect the nuclear recoil energy. The result is the 
familiar Bethe-Heitler expression,6 but now modified 
by the multiplicative factor \f(q)\2. To obtain the 
bremsstrahlung spectrum, this expression must be in
tegrated over the direction of the final electron. How
ever, because of the presence of the factor | f(q) \2 which 
we ultimately wish to identify with the electron scatter
ing results,1 the integration is more conveniently re-
expressed in terms of an integration over q and an 
appropriately related angle in a manner discussed by 
Rawitscher2 but modified for this problem. 

The angular part of the integration although rather 
long, may be done directly by contour methods and 
only the result is repeated here. We further note that 
in our calculations we are explicitly making the usual 
assumption that the nuclear charge distribution is 
spherically symmetric, so that | f(q) \2 is a function of 
the magnitude of q only. The resulting bremsstrahlung 
cross section expressed somewhat more conveniently 
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with the notation (£o,po) for the incident electron energy 
and momentum, (E,p) for the final electron energy and 
momentum, k the photon momentum, and finally «90 

being defined as the angle between p0 and k. The units 
are chosen such that ft=c=me= 1. 

When evaluated, Eq. (1) will give a measure of the 
effect of the finite charge radius of the nucleus on the 
bremsstrahlung. Since the expression contains the in
tegral of a single variable, in principle, it may be 
integrated numerically for any experimentally deter
mined form factor.1 However, some degree of caution 
must be advised, since our investigations, particularly 
that discussed below, show that, at high energies, Eq. 
(1) involves differences between very large and approxi
mately equal terms. 

For convenience of physical interpretation, it is de
sirable to evaluate the integral analytically. This can be 
done by choosing some suitably simple form factor. 
For example, we can carry through the integration for 
the form factor F(x) = [_l+lbx']~l corresponding to a 
Yukawa charge shape. Unfortunately, such a shape is 
physically unrealistic for a heavy nucleus, although it 
can be useful to demonstrate analytic properties. How
ever, we note that writing the cross section in terms of 
x clearly emphasizes the contribution of low momentum 
transfers through the x~2 factor, although the extent 
depends on the detailed behavior of R(x) and F(x). 
This suggests that somewhat similarly to Biel and 
Burhop,4 we make the expansion 

\F(x)\
2=l-%bx+a2'(bx)2+a-/(bxy+- (2) 

where 6 = (r2) is the mean-square-charge radius of the 
nucleus. The coefficients appearing in Eq. (2) are to be 
matched to the terms in the x= \(f expansions of more 
realistic form factors, say corresponding to a uniform 
or Woods-Saxon shaped charge distribution. In the 
numerical calculations of Biel and Burhop,4 expansions 
up to x* were used. 

With |F(V)|2 expressed in the form of Eq. (2), we 
may carry out the integration in Eq. (1) to any order 
in x by using a standard table of integrals. Correspond
ing to each term in Eq. (2), we find 
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6 H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959). 
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The general term in Eq. (3) involves successively 
simplifying integrals so that although straightforward, 
it is not too convenient to write explicitly. We note that 
0-pS is the point source cross section and Acri represents 
the first shape-independent correction for finite nuclear 
size in the sense that it is proportional to the root-mean-
square radius of the charge distribution. The explicit 
expressions for crps and Aai, will be sufficient for the 
purposes of this note. 

III. FINITE SIZE EFFECT AT HIGH ENERGIES 

Both theory and experimental results6 confirm that 
for high-energy electron, where EQ2>1, the bremsstrah-
lung is essentially confined within an angle where 
6Q^1/EQ. For the range of energies under consideration, 
0o2<lO~6-lO"~8 so that replacing cosine and sine square 
by the first few terms in their series expansions is en
tirely reasonable. We may, thus, take advantage of the 
considerable simplification that occurs in our expressions 
for the high-energy, small-angle approximations, namely 

E 0 , £ » l , Ea0o~l. (6) 

Since the limits on the integral in Eq. (1) play an 
important part in determining the energy dependence 
of our results, it is of interest to exhibit the leading 
order expressions explicitly. These are 

^ i = i ( | P o - k | - ^ ) 2 « ^ / [ 8 E 0
2 E 2 ( l + E o W ) 2 ] 

= d*/t&Ef(l-d)*(l+EM)l, (7) 

where the parameter d—k/Eo has been introduced. 
Note that while x2 increases and x\ decreases with 
incident electron energy, the dependence on photon 
energy is vice versa for a fixed incident electron energy. 

With the above approximations, we find that 
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As a check of our work, we note that o-ps as given in 
Eq. (8) corresponds to the formal given by Koch and 
Motz6 under the conditions of Eq. (6). 

A convenient qualitative measure of the effect of 
finite charge size on the bremsstrahlung cross section 
is given by the ratio 

(o-fs— <Tps)AP S — Ao-i/o-pg, ( 1 0 ) 

For forward emission, this expression simplifies to 
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IV. RESULTS AND DISCUSSION 

In Table I, we have given the results of calculating 
the percentage decrease in the bremsstrahlung cross 
section using — Acri/o-ps expressed in terms of Eqs. (8) 
and (9) for some representative BeV electrons incident 
on 82Pb208. The root-mean-square radius of this nu
cleus based on the Ford-Hill model7 is taken to be 
61 /2=5.42X10 -13 cm which in our units corresponds to 
&=1.97X10-4. 

Unlike the previous examples4 where Eo0o^>l, here 
the finite-nuclear-size effect is quite small ranging from 
about 0.01% for £ o 0o<i , to about 1.5% for E^o near 
10. For a fixed value of £o0o, the ratio — A<ri/o-pS is 
nearly constant over the range E 0 =0 .1 to 25 BeV. On 
the other hand, for a fixed angle of emission, inspection 
of Table I shows that — Ao"i/<rps increases with energy 
in agreement with the results of Biel and Burhop.4 Our 
results also agree for the small region of values where 
the two calculations overlap (Eo#o= 10 at 0.1 BeV). We 

7 K. W. Ford and D. L. Hill, Ann. Rev. Nucl. Sci. 5, 25 (1955). 
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TABLE I. The percentage decrease, — (100)A(ri/o-pg, in brems-
strahlung cross section for electrons of energy JEO incident on 
82Pb208, (&1'2 = 5.42X10"13 cm). 

(d = k/E0 = 0.99) £o = 0.1 BeV 1 BeV 6 BeV 25 BeV 

EO0O= 0 
^000= 0.25 
£o0o= 0.5 
£o0o= 1.0 
E<0o= 2.0 
EQ6Q = 4.0 
£o0o = lO.O 

(d = k/Eo = 0.9) 
EQeQ= 0 
£o0o= 0.25 
E0e0 = 0.5 
EQ6o= 1.0 
£o0o= 2.0 
E06o= 4.0 
£o0o=lO.O 

(d = k/Eo = O.S) 
E<fio= 0 
£0^0= 0.25 
£o0o= 0.5 
EddQ= 1.0 
EQ0Q= 2.0 
£o0o= 4.0 
EQ0o=lO.Q 

0.014 
0.015 
0.018 
0.030 
0.090 
0.271 
1.59 

0.004 
0.005 
0.009 
0.025 
0.073 
0.240 
1.40 

0.015 
0.016 
0.020 
0.031 
0.079 
0.264 
1.56 

0.012 
0.013 
0.016 
0.028 
0.079 
0.248 
1.46 

0.004 
0.005 
0.009 
0.025 
0.073 
0.238 
1.38 

0.014 
0.015 
0.018 
0.029 
0.073 
0.247 
1.47 

0.012 
0.013 
0.016 
0.028 
0.075 
0.242 
1.42 

0.003 
0.005 
0.009 
0.025 
0.073 
0.237 
1.37 

0.014 
0.015 
0.018 
0.028 
0.072 
0.242 
1.44 

0.012 
0.013 
0.016 
0.028 
0.071 
0.239 
1.41 

0.003 
0.005 
0.009 
0.025 
0.073 
0.237 
1.37 

have omitted the column corresponding to E 0 =0.1 BeV 
and d=0.99, since the high-energy approximation for 
the scattered electron is no longer valid for these values. 
I t is somewhat interesting to note that because of the 
logarithmic dependence upon energy for the ranges of 
d considered, a very crude estimate to the data can be 
found by using the simple empirical relation 

A c n / c r p ^ - f ^ l + E o W ) . (12) 

Pertaining to the question of the consistency of our 
treatment, we note that apart from the high-energy 
small-angle simplifications of Eq. (6), our principal 
approximation was to take only the first two terms for 
^ ( x ) ! 2 in Eq. (2). Going to the next term, after inte
gration, we find that the leading terms give a ratio 
Aa1/A(T2 which is approximately a^bE^iX — df^a^bx^ 
For the example of, say, a previously considered4 spheri
cal charge distribution, a 2 '~ 1.9X10-1 in our units, so 
neglecting second and higher order in x terms seems 
quite good for d=0.99, reasonable for d=0.9, and 
perhaps questionable for d=0.5. However, for this 
calculation, we are inclined to believe that use of a two-
term shape-independent approximation for | F(x) \2 may 
be better than comparison of successive terms may 
indicate. This possibility follows from the observation 
that all physically realistic F(x) vanish as x becomes 

large. This is not true for F(x) represented by a few 
terms in Eq. (2). The difference may not be important 
in the integral of Eq. (1) as long as x2 is not too large, 
particularly since the x~2 factor cuts down the large x 
contribution. However, when x2 becomes large, the 
term xn where n> 2 may not be sufficiently reduced by 
the x~2 factor to adequately duplicate the real \F(x)\2 

contribution to the integral in Eq. (1). Thus, at high 
energies, keeping only the first two terms in Eq. (2) 
may more nearly represent the finite size than keeping 
three or four. We may further speculate that the 
minima in the ratios at large angles and high E found 
in the calculations of Biel and Burhop4 may be a con
sequence of representing l i 7 ^ ) ! 2 by such a truncated 
polynomial. 

An alternative way of finding a rough quantitative 
estimate of the errors involved in using the first two 
terms in the form-factor expansion can be obtained by 
using a Yukawa form factor1 which, although physically 
unrealisitc, does vanish at large x and can be integrated 
in Eq. (1). In this particular case, |F (x ) | 2 can be 
written as 

\F(x)\2=ll+(lb)xl-2 

= l - 2 ( | & ) x + 2 ( ^ ) 2 x 2 [ l + ( ^ ) ^ ] - 1 

+ ( ^ ) V [ l + ( ^ ) ^ ] - 2 . (13) 

If we take b to be the mean square radius used in our 
calculations of Table I, the last two terms represent an 
exact correction due to terms neglected in our treat
ment of |F(#) | 2 . When these terms are integrated in 
Eq. (1) and evaluated according to the approximations 
of Eq. (6), we find that the effect of using an exact 
Yukawa form factor as opposed to the two-term shape-
independent expansion is to approximately reduce the 
values obtained in Table I by less than 25%. 

In conclusion, we find that for the characteristic 
angles of emission, the effect of nuclear size on the 
bremsstrahlung spectrum is quite small for electrons in 
the BeV-energy range, crudely following Eq. (12) for 
the range of energies and d considered. For more 
accurate results using experimentally determined form 
factors, numerical integration of Eq. (1) is available. 
For the values considered in this note, nuclear recoil 
energy corrections are not significant, however, as a 
practical matter, the neglected role of inelastic effects 
as a correction to the usual bremsstrahlung formula 
should also be considered, as well as the more usual 
electron screening effects. 
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